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1. Introduction 

 

Seismic isolation devices are usually adopted to re-

duce structural seismic responses. Because this kind of de-

vices have smaller horizontal stiffness and load capacity, 

and requirements under normal service conditions are not 

met. Therefore, shear pins are usually incorporated with 

seismic isolation devices to resist horizontal load under nor-

mal service conditions. In the commonly used isolation 

bearings, such as friction pendulum bearings, double spher-

ical seismic isolation bearings and cable-sliding friction 

seismic isolation bearings, shear pins are all installed [1-4]. 

For these bearings, the same seismic design philosophy is 

adopted. Namely, shear pins are used to restrict the relative 

displacement between the superstructure and the substruc-

ture under minor earthquakes and the shear pins will be cut 

off and the bridge structure will be changed into a seismic 

isolation system under major earthquakes. 

Up to now, effects of shear pin fractures have not 

been considered in bridge seismic design partly for lack of 

study on shear pin fractures and insufficient understanding 

of the mechanism of shear pin fractures. E.T. Filipov et al. 

investigated the seismic performance of typical configura-

tions currently used in the state of Illinois with two kinds of 

seismic isolation bearings using retainers or shear pins [5, 6]. 

J.S. Steelman et al. carried out static bearing experiments to 

investigate the parameters of low-profile fixed bearing with 

weak anchors and weak shear pins in longitudinal and trans-

verse directions [7]. J.E. Rodgers et al. conducted a series of 

shaking table experiments and numerical simulations to 

study the effects of connection fractures [8]. Xia et al. in-

vestigated the seismic behavior of a continuous girder 

bridge with the effects of shear pin fractures considered [9]. 

The model adopted was a combination of the initial hyster-

etic loop of friction pendulum bearing with a linear force-

displacement curve. A simplified model of the bridge was 

established with the finite element software ANSYS.  

Although some constitutive models for shear pin 

fractures were established, however, all the parameters of 

the models were not established beyond doubt. In this paper, 

shear fracture tests of shear pins were conducted firstly, and 

then a linear model and a bilinear model were established. 

Numerical results of seismic responses with the two models 

were compared at last. 

 

2. Shear fracture tests of shear pins 

 

Shear fracture tests of shear pins were carried out 

to establish constitutive models of shear pins. The test setup 

consisted of a top plate, an actuator of 500 kN fixed on the 

reaction wall, a bottom plate fixed on the ground through a 

connection plate, as shown in Fig. 1.  

The material of all the shear pins was Q345, and 

the yield and ultimate strength of the material were 360 and 

525 MPa, respectively. Each shear pin in the test was 

200 mm long and a cylinder with a V-shape groove in the 

middle, as shown in Fig. 2. So the minimum cross section 

of a shear pin was in the middle, and the section was de-

signed to be cut off in earthquakes. Four kinds of shear pins 

numbered from A1 to A4 were manufactured and the diam-

eter of the central section d = 10, 15, 20, 30 mm, respec-

tively. 
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Fig. 1 Setup of shear fracture tests 
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Fig. 2 A shear pin in the test 

Before a test, one or two shear pins were inserted 

in the holes in the top and bottom plates. To simulate the 

real conditions, a shear fracture tests of shear pins was actu-

ally a pure shear test. The two ends of a shear pin were fixed 

and rotations of shear pins are restricted. 

In the test, a displacement transducer was installed 

between the top and bottom plates and used to measure the 

relative horizontal displacement between the two plates. Be-

cause shear pins were fixed on the plates, the relative hori-

zontal displacement between the two plates was actually the 

shear deformation of the shear pin. The central sections of 

shear pins were located at the interface between the top and 

bottom plates. In the test, the bottom plate was fixed and the 

top plate was pulled by the actuator. Then the shear pins be-

tween the two plates would be cut off. The actuator was con-

trolled with force control load mode. The loading rates were 

50 kN/s, 250 kN/s, 1000 kN/s, 1500 kN/s, 2000 kN/s, and 
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numbered as Rate 1 to 5 respectively. This arrangement was 

made according to the loading capacity of the actuator. 
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Fig. 3 Relations of shear forces to shear deformations:  

a - A1; b - A2; c - A3; d - A4 

Relations of shear forces to shear deformations of 

different shear pins in all the tests are shown in Fig. 3. It’s 

found that each shear pin is cut off when the shear force 

reaches the maximum value. The maximum shear force dur-

ing a test is defined as the load capacity Fu. The deformation 

corresponding to Fu is defined as the ultimate deformation 

Δu. Relations of load capacities and ultimate deformations 

to loading rates are shown in Figs. 4 and 5. As shown, there 

is a little increase of the load capacity with the increase of 

the loading rate from Rate 1 to Rate 2. However, differences 

in load capacities are small. So, the influence of the loading 

rate on the load capacity is negligible. It’s also found that 

there are some fluctuations of the ultimate deformation 

along with the increase of the loading rate, but differences 

are also small. 
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Fig. 4 Relations of load capacities to loading rates 
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Fig. 5 Relations of ultimate deformations to loading rates 
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Fig. 6 Relations of dimensionless forces to dimensionless 

shear deformations 

The dimensionless force is defined as F / (fyd2) and 

the dimensionless shear deformation is defined as Δ / d. F 

represents the shear force of the shear pin, fy represents the 

yield strength of the material and Δ represents the shear de- 
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formation of the shear pin. Relations of dimensionless 

forces to dimensionless shear deformations are shown in 

Fig. 6. As shown, maximum dimensionless shear defor-

mations of all the shear pins are almost 0.18, so the shearing 

fracture condition of shear pins may be controlled by shear 

deformations. Maximum dimensionless forces are in the 

range of 0.81 to 1.02 and decrease with the increase of the 

shear pin diameter. Relations of dimensionless forces to di-

mensionless shear deformations are nonlinear, and the di-

mensionless stiffness decreases with the increase of the di-

mensionless displacement. 

 

3. The linear model 

 

A linear model can be established for shear pin 

fractures. The model is built according to the origin and the 

fracture point. There are three parameters in the model: the 

load capacity Fu, the ultimate deformation Δu and the equiv-

alent stiffness keq. And keq equals the ratio of Fu to Δu. Rela-

tions of Δu to d and Fu to d2 are shown in Fig. 7. As shown, 

relations of Δu to d and Fu to d2 are almost linear. Empirical 

formulae for Δu (mm), Fu (kN), keq (kN/mm) and d (mm) can 

be fitted by the least square method and described as: 

Δu = 0.1832d; (1) 

Fu = 0.2936d2; (2) 

keq = Fu
 / Δu = 1.6026d. (3) 
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Fig. 7 Parameters of the linear model: a - the ultimate  

deformation; b - the load capacity 
 

4. The bilinear model 
 

As shown in Fig. 6, the actual relation of dimen-

sionless force to dimensionless shear deformation is nonlin-

ear, so a bilinear model may describe the relation more ac-

curately than the linear model. The bilinear model is char-

acterized by the ultimate deformation Δu, the load capacity 

Fu, the yield deformation Δy, the yield force Fy, the initial 

stiffness k1 and the post-yield stiffness k2. Parameter defini-

tions of the bilinear model are shown in Fig. 8. 
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Fig. 8 Parameter definitions of the bilinear model 
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Fig. 9 Parameters of the bilinear model: a - the initial stiff-

ness; b - the post-yield stiffness; c - the yield force 
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k1 of the bilinear model is determined by the initial 

slope of the test curve. Δu and Fu can be determined by the 

maximum value of the test curve, which are the same as 

those of the linear model. The area under the test curve of 

shear deformation-force is a representative of energy dissi-

pation. Δy, Fy and k2 can be determined according to the prin-

ciple that the area under the test curve is equal to that under 

the bilinear model curve. Relations of k1 to d, k2 to d and Fy 

to d2 are shown in Fig. 9. 

As shown, relations in Fig. 9 are almost linear. Em-

pirical formulae for k1 (kN/mm), k2 (kN/mm), Fy (kN) and d 

(mm) are fitted by the least square method and can be de-

scribed as: 

k1 = 4.4089d; (4) 

k2 = 1.1081d-11.288; (5) 

Fy = 0.1545d2 + 27.713. (6) 

5. Comparisons of the two constitutive models 

 

In order to compare the two models of shear pins 

established above, a numerical analysis is conducted based 

on a two-span continuous girder bridge shown in Fig. 10, a. 

Each span is 30 m, and the pier height is 20 m. The material 

of the girder is C50 concrete, and that of the pier is C40 con-

crete. The cross section of the girder is shown in Fig. 10, b 

and that of the pier is a circle with a diameter of 4 m. Two 

same double spherical seismic isolation bearings (DSSI 

bearing) are installed on the mid-pier, and the friction coef-

ficients are 0.03. Two same expansion bearings are installed 

on each of the two abutments. The working mechanism of 

the DSSI bearing in earthquakes is similar to a Friction Pen-

dulum Sliding (FPS) bearing.  
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Fig. 10 The continuous girder bridge in the analysis  

(unit: m): a - elevation view; b - cross section of the 

girder 

 

The Beam 189 element of ANSYS is used to sim-

ulate the main girder, the cross beam and the pier. The ele-

ment remains elastic in the analysis. Beam189 is based on 

Timoshenko beam theory and shear deformation effects are 

included. Combin40 spring element is used to simulate the 

bearings and shear pins. A complete Combin40 element has 

six parameters, including K1, C, M, GAP, FSLIDE and K2. 

For a DSSI bearing, K1, K2 and FSLIDE are used. K1 is the 

Pre-sliding stiffness, K2 is the Post-sliding stiffness and 

FSLIDE is the maximum static friction force. For the linear 

model of shear pins, only K1 and FSLIDE are used. K1 is the 

equivalent shear stiffness and FSLIDE is the load capacity. 

For the bilinear model of shear pins, two Combin40 ele-

ments connected in series are used. The first one includes a 

K1 with a large value and an FSLIDE equal to the load ca-

pacity. The second one includes a K1 equal to the initial stiff-

ness, a K2 equal to the post-yield stiffness and an FSLIDE 

equal to yield force. 
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Fig. 11 Results of the DSSI bearing of EL-Centro seismic 

wave: a - displacement time histories; b - force time 

histories; c - hysteretic curves 
 

In the DSSI bearing, there are seven shear pins in-

stalled and the diameter of the central section of the shear 

pin is 25 mm. The parameters of the shear pins are calcu-

lated by the linear and bilinear models established according 

to Eqs. (1)-(6). The EL-Centro and Kobe seismic waves 

with the peak ground acceleration of 0.1 g are selected in the 

finite element analysis. The analysis results of the two mod-

els are compared and shown in Figs. 11 and 12. 

As shown, a little difference can be found between 

the hysteretic curves of the two models. However the dis-

placement and force time histories of the two models are al- 
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most the same. Therefore, although a bilinear model is more 

accurate, the linear model is simple, practical and can be 

chosen to simulate shear pin fractures acceptably in bridge 

seismic isolation design. 
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Fig. 12 Results of the DSSI bearing of Kobe seismic wave: 

a - displacement time histories; b - force time histo-

ries; c - hysteretic curves 

 

6. Conclusions 

 

Shear fracture tests of shear pins were carried out 

firstly to establish the linear and bilinear constitutive models 

for shear pin fractures. Then the numerical analysis results 

with the two models were compared. The following conclu-

sions were drawn: 

1. Influences of the loading rate on the load capac-

ity and ultimate deformation are negligible.  

2. Ultimate deformation, equivalent stiffness, ini-

tial stiffness and post-yield stiffness are approximately pro-

portional to the diameter of the shear pin. Yield force and 

load capacity are approximately proportional to the square 

of the diameter of the shear pin. 

3. The linear model is simple, practical and accu-

rate enough for the simulation of shear pin fractures in 

bridge seismic isolation design. 
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Tianbo Peng, Ning Guo 

EXPERIMENTAL AND NUMERICAL STUDIES OF 

SHEAR PIN FRACTURES BASED ON LINEAR AND 

BILINEAR MODELS 

S u m m a r y 

Shear pins are commonly used elements integrated 

with seismic isolation bearings to restrict the relative dis-

placement between the superstructure and the substructure. 

However, constitutive models for seismic isolation bearings 

used in seismic isolation designs have not considered the ef-

fects of shear pin fractures. In order to establish the consti-

tutive model of seismic isolation bearings with shear pin 

fractures considered, shear fracture tests of shear pins were 

conducted, and a linear model and a bilinear model for shear 

pin fractures were established. By comparing numerical re-

sults of different models, the linear constitutive model for 

shear pins was verified to be accurate enough and suggested 

to simulate the effects of shear pin fractures in seismic iso-

lation designs.  

 

Keywords: shear pin, shear fracture test, seismic isolation 

bearing, constitutive model. 
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