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1. Introduction 

 

Engineering systems are widely used for perform-

ing technological tasks in energetics, industry, transport, 

farming and population areas. Reliability indices of engi-

neering systems must be determined considering their ana-

lyzed reference period. The brittle fracture of the first 

component in a series system may cause a failure in this 

structure (Fig. 1, a). Thus, the system made of series con-

nected components m is at the stage of decomposition in 

case any of its components has failed. When the compo-

nents of this system are ductile, it can continue to operate 

under reduced reliability indices of the components. A sys-

tem (Fig. 1, b) consisting of perfectly ductile parallel con-

nected components can fail only when all of its contributo-

ry units have reached their limit states [1]. Then, the 

strongest component m of the ductile parallel system must 

survive in all extreme situations [2]. 

For static engineering systems, the safety or fail-

ure regions are determined referring to the unions and in-

tersections of survival or failure probabilities of the num-

ber of ductile components, m, which depends on a number 

of random modes of discrete failure [1]. Therefore, dynam-

ic reliability indices of auto-systems may be fined using 

failure modelling of their stochastically dependent compo-

nents. 

 

 

Fig. 1 Reliability index, β, versus the number of the com-

ponents for series (a) and parallel (b) systems 

 

The stochastic reliability parameters of an engi-

neering system depend on recurrent extreme events that are 

likely to occur during its reference working life. In spite of 

the shot duration of extreme actions, they belong to persis-

tent design situations characterized by random non-

stationary safety margin processes. An objective prediction 

for reliability indices of engineering systems using deter-

ministic and semi-probabilistic methods is hardly moved 

into engineering reality. Regardless of efforts to improve 

the semi-probabilistic formats, it is inconceivable to fix the 

correct values of the reliability indices of stochastic sys-

tems.  

Any auto-system may be analyzed as a series sys-

tem with highly correlated particular elements characteriz-

ing the behaviour of substantial elements at times t1, t2, …, 

tn. 

Using fully probability-based approaches reliabil-

ity indices may be predicted. Probability-based models 

allow us to explicitly define basic and additional uncertain-

ties of the analyzed models. However, the probabilistic 

analysis of the systems involves the integration of multi-

variate and multistate distributions. The exact probability-

based analysis using multidimensional integrals of the sys-

tems having stochastically dependent components is also 

very difficult. 

Failure probabilities of series and parallel systems 

as the unions and intersections of these probabilities may 

be defined by equations: 
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where m is the number of components or failure modes; Xk 

(k = 1, 2, …, m) is a normal random variable; βk is a relia-

bility index of the k-th component of the systems; ρ is a 

quadratic matrix of correlation coefficients. 

Computational methods for the probabilistic anal-

ysis of highly reliable systems are based on the variable-

complexity approach [3], importance and conditional sam-

pling procedures [4], or direction simulation approaches 

[5]. However, these improvements are inconvenient by 

reason of mathematical complication. 

Pandey and co’authors [6-10] proposed the sim-

plified computational method for a product of conditional 

marginal (PCM). The computation of this method is sim-

plified using the multidimensional normal distribution of 
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the joint, which is expressed as a product of conditional 

probabilities m approximating by one-dimensional normal 

distribution. When using the product of the conditional 

marginal (PCM) method, cumulative failure probabilities 

of series and parallel systems in failure modes may be ex-

pressed using Eqs. (1) and (2) as follows: 
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where ck|(k-1) is a conditional normal fractile defined under 

the conditional variable 
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   which is 

normally distributed. 

Based on the principles of conditional probability 

and the theoretical expression of equivalent linear failure 

modes (ELFM), an approximate method has been proposed 

by Kang et al. [11]. This method is suitable for calculating 

failure probabilities taking into account series and parallel 

systems. 

Li et al. [12] suggested approaches providing a 

possibility of transforming the computation of the proba-

bility of the system usually leading to the multi-

dimensional integration of joint probability density func-

tions and to the one-dimensional integration of the proba-

bility density functions of the equivalent extreme-value. 

Based on simplified matrix procedures, the ma-

trix-based system reliability (MSR) method introduced by 

Song and Kang [13] may be used for calculating failure 

probabilities in the system. 

Kang and Song [14] suggested the method devel-

oped for evaluating multivariate normal integrals defined 

for a general system of the events, including series, paral-

lel, cut-set and link-set systems. This method leads to mak-

ing a compound of two components sequentially coupled 

by the union or intersection until the systems become a 

single compound event. Numerical procedures are devel-

oped to obtain the reliability index of a new compound 

event. However, analyses of systems consisting of not 

equireliable and not equicorrelated components is difficult.  

This paper is aimed to show a uniform compound 

methodology based on the probabilistic concepts for relia-

bility assessment of engineering systems. The compound 

methodology recommends to separate of dynamic (time-

dependent) probabilistic models of auto-systems from the 

static models of general engineering systems. For assessing 

survival probabilities of auto-systems affected by random 

demands n and general systems comprised of correlated 

auto-systems m, the concept of the method for transformed 

conditional probabilities (TCP) and conventional correla-

tion vectors (CCV) may be used. 

 

2. Auto-systems as the components of general systems 

 

2.1. Dynamic stochastic parameters 

 

Predictions for dynamic (time-dependent) surviv-

al probabilities of auto-systems are very relevant in the 

probabilistic analysis of engineering systems. 

The time-dependent safety margin or limit state 

function of perfectly ductile particular element cut tk of the 

auto-system may be defined as: 

       k k R E k
Z t g t , g R t   E   , (5) 

where Xk (t) and θ are the vectors of basic and additional 

variables; R (response) and Ek (t) (demands) are random 

resistance and action effects of particular elements; R  and 

E are uncertainties of the design model. For analyzing the 

auto-system, a finite decreasing sequence and survival 

probabilities P[S1(t)] ≥ P[S2(t)] ≥ … ≥ P[Sk(t)] ≥ … 

… ≥ P[Sn(t)] are used. 

The concepts of transformed conditional probabil-

ities (TCP) and conventional correlation vectors (CCV) 

have been proposed by Kudzys and co-authors 

[1, 15, 16, 17]. According to these concepts, transition 

probability of a failure in the ductile auto-system at time tk, 

assuming that the analyzed element was safe at time less 

than tk, may be expressed by the equation: 
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where  k
F t  and  k

S t  are the failure and survival prob-

abilities of single particular elements at time k
t . 

The conventional correlation factor in stochasti-

cally dependent sequence cuts is formed from the k-th row 

of the quadratic matrix of the basic coefficients of correla-

tion. Therefore, a conventional correlation factor may be 

expressed as follows: 
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Thus, for practical sake, the matrix of the correla-

tion coefficient may be modified using the conventional 

correlation vector (CCV) consisting of bounded correlation 

factors written in the form: 
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The correlation coefficients of the elements or se-

quence cuts of the auto-system may be expressed as fol-

lows: 
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where    k i
Cov Z t ,Z t    and σ[Zk (t)] and σ[Zi (t)] are 

auto covariance and standard deviations from safety mar-

gins  k
Z t  and  i

Z t computed using Eq. (5). 

The bounded index of a conventional correlation 

factor in the random multi-cut sequence may be defined as 

follows: 
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where its index 
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shows changes in survival probabilities of the elements of 

the bounded index of the conventional correlation factor 

when βk (t) is the reliability index of the k-th element. 

 

2.2. Dynamic survival probabilities 

 

Using the concept of transition failure probability 

based on probabilistic approaches and Eq. (6), cumulative 

survival probability of dynamic series auto-systems con-

sists of n components (cuts) may be expressed as: 
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where n is the number of the extreme situations of the non-

stationary demand process and 
 
 

tk
k f

x
t  is the indexed 

conventional correlation factor that may be defined using 

Eqs. (7) and (10). 

 

3. Series and parallel general engineering systems 

 

3.1. Static survival probabilities 

 

The safety margins of the components (auto-

systems) of static general engineering systems may be de-

fined as: 

   k k R E k
Z g , g R   E   , (13) 

where k = 1, 2, …, m depends on the k-th random discrete 

failure mode of engineering systems at their service time.  

Following the same probabilistic approaches and 

analogically to Eq. (12), cumulative survival probability 

for static series ductile general systems (Fig. 1, a) may be 

expressed as: 
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where P(Sk) is the survival probability of k-th ductile auto-

systems; m is the number of components or failure modes 

of engineering systems; kx

k f
  is the indexed conventional 

correlation factor, the value of which is defined using 

Eqs. (7) and (10) and correlation coefficients 

     ki k i k i k i
Z ,Z Cov Z ,Z Z Z      of the quadratic 

matrix of correlation coefficients. 
Cumulative survival probability of static parallel 

ductile engineering systems (Fig. 1, b) consists of compo-

nents m may be expressed as: 
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where P(Fk) is the failure probability of the k-th ductile 

auto-system of the sequence of failure probabilities 

P(F1) ≥ … ≥ P(Fk) ≥ … ≥ P(Fm). For parallel general sys-

tems, the demand vector θEEk corresponds to failure state 

after statical redistribution of actions. When the correlation 

factor by Eq. (7) is equal to 0 or 1, the suggested Eqs. (12), 

(14) and (15) give the exact solutions. 

Series and parallel engineering systems may be 

introduced by generalized reliability indices: 

 1

ss ss
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where     is the cumulative distribution function of the 
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standard normal distribution; Pss (S) and Pps (S) are survival 

probabilities of series and parallel engineering systems 

calculated using Eq. (14) and Eq. (15), respectively. 

 

3.2. Target reliability indices 

 

The selection of rational minimum values of tar-

get reliability indices, βST, of different type general engi-

neering systems requires special investigations. However, 

their optimum values should be always related to working 

capacity reserves of the injured systems and functional 

working classes of their components in critical demand 

situations. When the injured elements of the systems are 

not easily repairable and replaceable, the system belongs to 

classes FC1 and FC2, respectively. The systems with not 

repairable, and not replaceable components may be as-

cribed to FC3 class. 

The target reliability index, βST, of general engi-

neering systems depends on human life, economic, social 

and environmental consequences due to their failure. How-

ever, differentiation and classification processes of βST of 

the systems are closely related not only to the consequenc-

es of their failure but also to incremental reliability costs. 

When the expected loss of human life is significant, it is 

very difficult to choose the optimal value of target reliabil-

ity index, βST, because to estimate the material losses per 

human life loses is very intricate. 

When the additional reliability of engineering sys-

tems can be achieved at a low cost, then larger target relia-

bility index, βST, may be acceptable [18]. Any system hav-

ing equally important failure modes should be designed for 

a higher level of βST. The smallest and largest values of βST 

belong to information processing systems and dangerous 

construction works, respectively. 

Some possible values of target reliability index, 

βST, are presented in Table 1. The proposed recommenda-

tions may satisfy the agreements between reliability and 

economy factors in engineering systems. 

The design documents [19, 20] and recommenda-

tions by the JCSS [21] are used for designing construction 

work members and their systems. An overview of these 

documents and their reliability classes RC1, RC2 and RC3 

are associated with consequence classes CC1, CC2 and 

CC3 when the target values of reliability indices, for the 

period of 50-year reference, have been equal to  

βST = 3.3 – 4.3. 
 

Table 1 

Target reliability indices of engineering systems 

C
o

n
se

q
u

en
ce

  
cl

as
s 

Functional working class 

For 20 years reference period 
of equipment’s 

For 50 years refer-
ence period of con-
struction works 

FC1 FC2 FC3 FC1 FC2 FC3 

CC1 0.5-1.0 0.75-1.25 1.0-1.5 3.1 3.3 3.8 

CC2 0.75-1.25 1.0-1.5 1.25-1.75 3.3 3.8 4.3 

CC3 1.0-1.5 1.25-1.75 1.5-2.0 3.8 4.3 4.7 

 

Particular elements and structural members of the 

structure may be designed for the same higher or lower 

reliability index as for the entire system [1]. The difference 

between reliability indices of the systems of the events and 

their components should depend on the coefficient of cor-

relation ρki of these components. When the correlation co-

efficient of series and parallel systems increases, target 

reliability index, βST, may increase and decrease [18]. 

 

4. Numerical illustrations 

 

4.1. Series auto-systems consist of component n 

 

The series auto-systems consisting of n equirelia-

ble and equicorrelated components have been analysed 

[8, 11]. There are presented several cases when reliability 

indices, βk (t), of each component of the system is equal to 

3.5 and 4.0. The initial data of auto-system and results of 

calculation are shown in Table 2. The reliability indices of 

series auto-systems are computed using three different 

computational methods. 
 

Table 2 

Reliability indices of series auto-systems 

Reliability index 
of component 

The number 
of components, 

n 

Conventional 
correlation 
factor ki(t) 

Design methods 

TCP+CCV by 
Eq. (16) 

Numerical integ-
ration [8] 

PCM [8] 

3.5 

7 

0.30 2.960 2.948 2.945 

0.50 2.984 2.968 2.949 

0.70 3.028 3.022 2.953 

0.90 3.138 3.164 2.960 

27 

0.30 2.541 2.521 2.509 

0.50 2.594 2.584 2.526 

0.70 2.680 2.711 2.547 

0.90 2.876 2.976 2.572 

4.0 

5 
0.10 3.603 3.601 3.601 

0.95 3.792 3.790 3.604 

20 

0.10 3.230 3.224 3.224 

0.50 3.293 3.254 3.227 

0.95 3.293 3.254 3.227 

50 
0.50 3.057 3.016 2.962 

0.90 3.346 3.426 2.981 
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Illustrative example shows that the TCP+CCV 

concepts may help us to predict reliability indices of the 

series auto-system and estimate their quantitative durabil-

ity level. 

 

4.2. Failure probabilities and reliability indices of  

engineering systems 

 

The values of failure probabilities and reliability 

indices of series and parallel engineering systems consist-

ing of six equireliable components have been analyzed. 

The reliability index of these components in the engineer-

ing system is equal to β = 1–3 [6, 7].  

The quadratic matrix of the basic coefficients of 

correlation may be written as follows: 

1 0 8292 0 7312 0 6180 0 4787 0 2764

0 8292 1 0 6614 0 5590 0 4330 0 2500

0 7313 0 6614 1 0 4931 0 3819 0 2205

0 6180 0 5590 0 4931 1 0 3227 0 1863

0 4787 0 4330 0 3819 0 3227 1 0 1443

0 2764 0 2500 0 2205 0 1863 0 1443 1

ki

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

  

Conventional correlation factors may be comput-

ed using the quadratic matrix of the basic coefficients of 

correlation and Eq. (7). Then, conventional correlation 

factors in the engineering systems are equal to ρ2|1=0.8292, 

ρ3|21=0.6963, ρ4|321=0.5567, ρ5|4321=0.4041 and 

ρ6|54321=0.2155.  

The failure probabilities and reliability indices of 

series and parallel systems with six equireliable compo-

nents are calculated by different methods. Calculation re-

sults are presented in Tables 3 and 4. 

 

Table 3 

Failure probabilities and reliability indices of series  

engineering systems having 6 equireliable components 

el  

Design methods 

TCP+CCV 

by 

Eqs.(14),(16) 

Numerical Inte-

gration 

by Eq.(1) [6, 7] 

PCM 

by Eq.(3) [6, 7] 

3 
0.006694 

2.47 

0.006928 

2.46 

0.007675 

2.42 

2 
0.09734 

1.30 

0.09544 

1.31 

0.1012 

1.28 

1 
0.4708 

0.07 

0.4665 

0.08 

0.4641 

0.09 

 

Table 4 

Failure probabilities and reliability indices of parallel  

engineering systems having 6 equireliable components 

el  

Design methods 

TCP+CCM 

by 

Eq.(15),(17) 

Numerical In-

tegration 

by Eq.(2) [6, 7] 

PCM 

by Eq. (4) [6, 7] 

3 
20.13*10-8 

5.07 

7.035*10-8  

5.26 

4.556*10-8 

5.34 

2 
3.740*10-5  

3.96 

5.282*10-5  

3.88 

4.390*10-5 

3.92 

1 
5.264*10-3  

2.56 

5.926*10-3  

2.52 

5.829*10-3 

2.52 

Failure probabilities and reliability indices are 

calculated using the TCP+CCV method by Eq. (14) and 

Eq. (16) for series and by Eq. (15) and Eq. (17) for parallel 

systems.  

In illustrative examples presented results of sur-

vival and failure probabilities and reliability indices of the 

engineering system calculated using the proposed method 

of transformed conditional probabilities with conventional 

correlation vectors (TCP+CCV), the method of the product 

of conditional marginal (PCM) and exact numerical inte-

gration are very close. 

 

5. Conclusions 

 

The proposed concept of the compound design 

model and refusing complex multidimensional integrals 

helps us with avoiding mathematical problems of the pre-

diction analysis of dynamic (time-dependent) reliability 

indices of engineering systems. For calculating the proba-

bility of dynamics, series auto-systems consisting of par-

ticular element cuts n and static series and parallel general 

systems made of correlated auto-systems m are used for the 

compound design model. 

The formulated concepts of transformed condi-

tional probabilities (TCP) with conventional correlation 

vectors (CCV) allow us to predict reliability indices of 

series and parallel engineering systems.  

The suggested compound methodology of relia-

bility analysis of engineering systems using dynamic and 

static stages helps designers with conducting probability-

based analysis in design practice. The conducted unsophis-

ticated probabilistic analysis of design models may stimu-

late designers to use probabilistic methods in their practice 

in a more efficient and active way. 
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A. Kudzys, O. Lukoševičienė 

THE APPLICATION OF A COMPOUND MODEL FOR 

PREDICTING RELIABILITY INDICES OF  

ENGINEERING SYSTEMS 

S u m m a r y 

The article considers sophisticated formats of the 

multivariate integration of time-dependent technical relia-

bility prediction for ductile series and parallel engineering 

systems as a structure embracing stochastically dependent 

components. The paper recommends the rational avoidance 

of complicated multidimensional integrals and the separa-

tion of dynamic (time-dependent) probabilistic models of 

auto-systems from the static models of general engineering 

systems. For assessing survival probabilities of auto-

systems affected by random demands n and general sys-

tems comprised of correlated auto-systems m, the concept 

of the method for transformed conditional probabilities 

(TCP) and conventional correlation vectors (CCV) have 

been used. The article also discusses target reliability indi-

ces of engineering systems. The analysis of reliability indi-

ces to series and parallel engineering systems is demon-

strated applying the numerical examples. 

 

Keywords: survival probability, reliability index, engi-
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