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Nomenclature 

 

STFT - short-time Fourier transform; WVD - Wigner– Vil-

ler distribution; WT- Wavelet transform; PF - product func-

tions; SVD - singular value decomposition; LMD - local 

mean decomposition; EMD - Empirical mode decomposi-

tion; FM - frequency modulated; AM - amplitude modu-

lated; mi - local mean value; s1n(t) - frequency modulated 

signal; a1(t) - instantaneous amplitude; f1(t) - instantaneous 

frequency;  
1

t  - instantaneous phase; σi - singular values; 

Dp - pitch diameter; Db - diameter of the rolling element; 

Fs - shaft frequency; α - contact angle; Nb - number of roll-

ing elements; FBPI - inner race ball passes frequency; 

FBPO - outer race ball passes frequency; FB - Ball Spins Fre-

quency; FC - Cage Frequency. 

 

1. Introduction 

 

The health status of rotating machine components 

can be evaluated by measured information, such as vibra-

tions, without dismantling the machine. Now it is of increas-

ing importance for timely and effective health diagnosis to 

reduce costly machine downtime and maintain high produc-

tivity [1]. 

There are many techniques of fault characteristic 

extraction available for the detection of rotating machinery 

faults such as time-domain statistical analysis, Fourier trans-

form, short-time Fourier transform (STFT), Wigner–Viller 

distribution (WVD), Wavelet transform (WT) etc [2, 3], but 

each of these methods has its limitations[4]. For example, 

the Wigner Ville distribution would cause cross-term inter-

ference when dealing with the multi component signals; the 

analysis window of STFT is fixed; the WT has been well 

applied in fault diagnosis [5, 6] but different mother wave-

lets should be predefined for each component [7-11]. 

Vibration based time–frequency analysis to the 

mechanical vibration signals has become a most successful 

and effective technique in recent years. Empirical mode de-

composition (EMD) has been recently developed in fault di-

agnosis of rotating machinery. EMD is based on the local 

characteristic time scales of a signal and could decompose 

the complicated signal into a set of complete and almost or-

thogonal intrinsic mode functions (IMFs). EMD is a self-

adaptive signal processing method that can be applied to 

non-linear and non-stationary process perfectly. However, 

one of the major drawbacks of EMD is the mode mixing 

problem [12]. In addition, sometimes the unexplainable neg-

ative instantaneous frequency would appear when compu-

ting instantaneous frequency by performing Hilbert trans-

form to the decomposition results of EMD and meanwhile 

the end effects would be more serious [13, 14]. A novel self-

adaptive time–frequency analysis method named local mean 

decomposition (LMD), recently, was presented by Jonathan 

S. Smith [15] and used as a demodulation analysis method, 

which is particularly suitable for the processing of multi-

component amplitude- modulated and frequency-modulated 

(AM–FM) signals. By using LMD, any complicated signal 

can be decomposed into a number of product functions 

(PFs), each of which is the product of an envelope signal 

(obtained directly by the decomposition) from which instan-

taneous amplitude of the PF can be obtained and a purely 

frequency modulated signal from which a well-defined in-

stantaneous frequency could be calculated. In essence, each 

PF is exactly a mono-component AM–FM signal [16]. 

The procedure of LMD could be, in fact, regarded 

as the process of demodulation [22-28]. Modulation infor-

mation can be extracted by performing spectrum analysis to 

the instantaneous amplitude (envelope signal, obtained di-

rectly by the decomposition) of each PF component rather 

than by performing Hilbert transform to the PF components. 

Hence, when LMD and EMD are applied to the demodula-

tion analysis respectively, compared with EMD [17-18], the 

prominent advantage of LMD is to avoid the Hilbert trans-

form. In addition, the LMD iteration process which uses 

smoothed local means and local magnitudes avoids the cu-

bic spline approach used in EMD [19], which maybe bring 

the envelope errors and influence on the precision of the in-

stantaneous frequency and amplitude. Moreover, compared 

with EMD the end effect is not obvious in LMD approach 

because of faster algorithm speed and less iterative times 

[20, 21]. Different researchers have applied LMD combin-

ing with other signal processing techniques to bearing fault 

diagnosis and obtained superior diagnosis results compared 

with the use of LMD alone [22]. 

This paper proposes a hybrid approach for the fault 

detection of rolling element bearing which combine Singu-

lar value decomposition (SVD) with LMD algorithm and 

the results show the excellent performance of the proposed 

technique in revealing the rolling element bearing fault. 

Singular value decomposition (SVD) is a non-par-

ametric technique which has been widely used in feature ex-

traction [23], in voice, image, mobile communication, elec-

tric power [24, 25], biomedicine and earthquake monitoring 

since it was developed to extract the useful element from 

noisy signal by Tufts. The one-dimensional signal can be 

transformed into many kinds of matrices, such as Toeplitz 

matrix, cycle matrix and Hankel matrix. Zhao et al. pointed 

out that the signal processing effect of Hankel matrix-based 
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SVD was very similar to that of wavelet transform. The sim-

ilarity of Hankel matrix- based SVD and wavelet transform 

in signal processing could be applied to noise reduction, sin-

gularity detection, feature extraction and fault diagno-

sis [26]. 

The layout of the paper is as follows: A novel nu-

merical scheme for rolling element bearing fault diagnosis 

based on hybrid SVD-LMD and conventional signal pro-

cessing methods is proposed in Section 2. An experimental 

study is applied for rolling bearing fault diagnosis In Sec-

tion 3. The results demonstrates that the proposed approach 

is feasible in Section 4. Finally, the conclusions are pre-

sented in Section 5. 

 

2. The proposed numerical approach for rolling  

bearing fault diagnosis 

 

This paper combines SVD and LMD algorithm, the 

procedure of the numerical approach is briefly described as 

follows: 

Step 1: Implementing the SVD denoising to filter 

the original signal and separate the signal of interest from 

the noise. 

Step 2: Use LMD method to decompose the puri-

fied signal into PFs, meantime instantaneous amplitude and 

instantaneous frequency of each PF component can be cal-

culated. 

Step 3: Denoise the PFs by SVD and sum to LMD 

again, repeate the same process until we can obtain the pre-

cision requisite of the time frequency analysis.  

Step 4: Applying spectrum analysis to the instanta-

neous amplitude of PF component including dominant fea-

ture information and extracte the fault characteristic fre-

quency of the roller bearing.  

The next Section introduces the basic principle of 

Local mean decomposition and Singular value dcomposi-

tion (SVD).  

 

2.1. Basic principle of Local mean decomposition  

 

The steps of LMD of any signal x(t) are as follows 

[27]:  

1. From the original signal x(t), determine all local 

mean value mi of each two successive extrema ni and ni+1: 

1

2

i i

i

n n
m 


 . (1) 

2. A corresponding envelope estimate ai is given 

by: 

1

2

i i

i

n n
a 


 . (2) 

3. Interplate straight lines of local mean and enve-

lope estimate values between successive extrema mi and ai, 

local mean function m11(t) and a11(t) can be formed by using 

moving averaging to smooth them. 

4. Subtract the smoothed mean signal from the 

original x(t): 

     11 11
h t x t m t  . (3) 

5. Get the frequency modulated signal s11(t), by di-

viding h11(t) by a11(t): 
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6. Check whether s11(t) is a normalized frequency-

modulated signal. If s11(t) is a normalized frequency-modu-

lated signal, the envelope function a12(t) is close to 1. If not, 

go back to the first step to repeat the same procedure until a 

purely frequency modulated signal s1n(t) that meets
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Where the objective is: 

 1
1

n

n

lim a t


 . (7) 

7. Envelope function a1(t) can be derived by multi-

plying all a1k(t): 

         1 11 12 1 1

1

n

n q

q

a t a t a t ......a t a t


  . (8) 

8. Using the envelope function a1(t) and the final 

frequency modulated signal s1n(t) to get the first product 

function PF1 of the original signal by their multiplication: 

     1 1 1n
PF t a t s t . (9) 

 

9. The instantaneous amplitude of PF1 is a1(t). In-

stantaneous phase and instantaneous frequency can be de-

termined by (Eq. 10) and (Eq. 11) respectively. 

    1 11
t arccos s t  ; (10) 
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10. PF1 is subtracted from original data x(t) result-

ing in a new function u1(t), which becomes the new data and 

the whole process is repeated k times until uk(t) is a constant 

or contains no more oscillations. 
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 (12) 

Then we let u1(t) as a new original signal and repeat 

step 1 to step 4 till all uk(t) meet the monotone function con-

dition. Therefore, the original signal can be expressed as the 

sum of PF components and a monotonic component [31]. 

     
1

k

P k

p

x t PF t u t


  . (13) 

2.2. Basic principle of Singular Value Decomposition 

(SVD) 

 

In this paper, SVD is used for denoising vibration 

signals, by which, the matrix produced with noisy signal is 

decomposed into a number of singular values and subspaces 

of signal and noise [28]. The detailed procedures of SVD 

denoising, can be summarized as follows. 

Suppose A is a matrix m × n whose entries come 

from the field K, which is either the field of real numbers or 

the field of complex numbers. Then it exists a factorization 

of the form: 

,
T

A U V   (14) 

where U is an m × m unitary matrix over K, Σ is a m × n 

diagonal matrix with non-negative real numbers on the di-

agonal. 

 1 2
,0, ,

q
..diag ...   

  . (15) 

The diagonal entries σi of  are known as the 

singular values (SVs) of A. The n × n unitary matrix VT de-

notes the conjugate transpose of the n × n unitary matrix V. 

Such a factorization is called a singular  

value decomposition of A, for a discrete signal 

 ,X x x x      , commonly, we can construct a 

Hankel matrix as: 
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And the component matrix Ai when Hankel matrix 

is used can be formed as: 
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where 1 < m < N, 1 and
mXn

n N m A    . A can be 

converted as: 

1 1 1 2 2 2
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where {ui} and {vi}, are column vectors of U and V, then 
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T
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A component signal Pi can be expressed as the vec-

tor form: 

 1 11

1 1
, ; ,

m XT Xn
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     . (21) 

The original signal can be expressed as: 

1

q

i

i

X P


  . (22) 

SVD plays an essential task in signal processing 

because it can divide a signal space into a preferred space 

and a useless space, therefore, noisy elements could be sub-

tracted from the received signals. Comparing with the char-

acteristic of noise whose singular values are all close to zero, 

the singular values of vibration signals collected from a 

faulty bearing are generally much bigger than zero. So A is 

the superposition of the vibration signals space and noise 

space and can be divided into two subspaces as follows: 
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       are the singular values in the 

signal subspace and the noise subspace. 
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http://en.wikipedia.org/wiki/Matrix_(mathematics)
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http://en.wikipedia.org/wiki/Real_number
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http://en.wikipedia.org/wiki/Diagonal_matrix
http://en.wikipedia.org/wiki/Singular_value
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T

s s s s
A U V  ; (27) 

T

N N N N
A U V  . (28) 

As and AN are the signal subspace and the noise sub-

space, respectively. By subtracting AN from A, noisy ele-

ments could be suppressed from the received signals, and 

we can achieve the desired signal. 

 

3. Experiment data analysis  

 

To verify the effectiveness of the proposed ap-

proach. In this paper all the roller bearing vibration data an-

alyzed are from the website of Case Western Reserve Uni-

versity Bearing Data Center [29], motor power of the test is 

14.7 KW, and 6205-2RS SKF bearing was selected, motor 

speed of test is 1680 tr/min, the sampling frequency is 

12000 HZ, the test had simulated inner and outer rings fault 

of the bearing. The fault characteristic frequencies of the 

roller bearing can be obtained as follows [30, 31]: 

Cage frequency (FC): 

1
2

s b

C

p

F D
F cos

D


 
  

 
 

, (29) 

where Dp is the pitch diameter; Db is the diameter of the roll-

ing element; Fs is the shaft frequency; α is the contact angle; 

Nb - the number of rolling elements.  

The inner race ball passes frequency (FBPI): 

1 cos
2
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p

F D
F N
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and the outer race ball passes frequency (FBPO): 

1
2

s b
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p

F D
F cos N
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. (31) 

Ball spins frequency (FB): 

2

ps b

B b

b p

DF D
F 1 cos N

2 D D


  
    

  
  

. (32) 

Table 

Bearing specification 
 

Dp, mm Db, mm Nb, ball α, degree 

39.04 7.94 9 0 

 

The running speed of the motor was 28 Hz, based 

on the bearing parameters given in Table, the characteristic 

frequency of the roller bearing with outrace fault is calcu-

lated as FBPO = 107.57 Hz, the characteristic frequency of 

the roller bearing with inner-race fault is calculated as 

FBPI = 162.45 Hz. 

 

4. Results and discussion  

 

Fig. 1 show the raw vibration signals extracted 

from a healthy bearing. In industrial environment, informa-

tive accelerations are always affected, buried and masked by 

noises. Subsequently, the application of LMD for roller 

bearing vibration signals processing produces some PFs also 

strongly affected by noises. In other words, the number of 

the decomposed PFs is dependent on the noise quantity. 

 

 
 

Fig. 1 The raw vibration signal collected from a healthy 

bearing 

 

By applying the proposed approach, we can see the 

number of PFs derived from the original signals, shown as 

Fig. 2. After that, the spectrum analysis using FFT trans-

form   is   applied   to   the   instantaneous   amplitude of PF1  

 

 
 

Fig. 2 PFs of healthy bearing using the proposed method 

 
 

Fig. 3 The FFT spectrum of the instantaneous amplitude of 

PF1 
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component to extract the characteristic frequency of the 

roller bearing. When normal bearing data are analyzed using 

the proposed method, from the results obtained in Fig. 3, no 

fault characteristic frequency and its harmonics can be iden-

tified. 

Fig. 4 shows the raw vibration signal collected 

from bearing with an outer race fault. The impulses related 

to the features of the faulty bearings were almost completely 

masked by noise, it can be seen that due to the defect present 

in the rolling bearing, the vibration signal presents the peri-

odicity impacts features, but there exist very serious ambient 

noises. 

Consequently, we combine LMD with other tech-

niques to bearing fault diagnosis. 

 

 
 

Fig. 4 The raw vibration signal collected from bearing with 

an outer race fault 

 

With LMD method, the vibration acceleration sig-

nal is decomposed to 5 PF components and one residue 

shown in Fig. 5. Obviously, PF1 is still very complicated, 

even similar to the original vibration signal, it can be ob-

served in Fig. 6 that the fault feature is drowned by the back-

ground signals relevant to the rotary speed of rotor and other 

noise, the FFT spectra cannot capture and illustrate any fault 

characteristics. 

 

 
 

Fig. 5 PFs of tested bearing with outrace fault obtained by 

LMD 

 

Applying the proposed method which combines 

SVD denoising and LMD algorithm. The ambient noises are 

effectively suppressed, meanwhile, the periodicity impacts 

features are well reserved, PFs components are obtained 

shown in Fig. 7. Meantime instantaneous amplitude and in-

stantaneous frequency of each PF component can be calcu-

lated then fault feature can be extracted accurately by apply-

ing spectrum analysis to the instantaneous amplitude of PF 

component including dominant feature information. 

 

 
 

Fig. 6 The FFT spectrum of the instantaneous amplitude of 

PF1 

 

From Fig. 7, it can be seen clearly PF1 is modu-

lated, so the fault feature of vibration signals would be ex-

tracted effectively by applying FFT transform to the instan-

taneous amplitude of the first PF component.  

The calculated frequency of the roller bearing with 

outrace fault (107.57 Hz) and its harmonic frequencies 

could be found in the amplitude spectrum shown in (Fig. 8), 

it is clear that the proposed method can achieve better results 

compared with the use of LMD alone. 

 

 
 

Fig. 7 PFs of tested bearing with outrace fault using hybrid 

SVD and LMD 

 

 
 

Fig. 8 The FFT spectrum of the instantaneous amplitude of 

PF1 

 

Fig. 9 shows the raw vibration signals of defective 

bearing with an inner race fault. The theoretic characteristic  
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Fig. 9 The raw vibration signal collected from bearing with 

inner race fault 

 

frequency of the roller bearing with inner-race fault is cal-

culated as FBPI = 162.45 Hz. 

By applying hybrid SVD-LMD the PFs compo-

nents are obtained, shown as Fig. 10. After that, the spec-

trum analysis using FFT transform is applied to the instan-

taneous amplitude of PF1 component to extracte the demod-

ulated frequency. The theoretic characteristic frequency of 

the roller bearing with inner-race fault (162.45 Hz) and the 

shaft rotational frequency and its third harmonic have been 

clearly detected in the amplitude spectra shown in Fig. 11, 

which indicates the amplitude modulation of the carrier fre-

quency by the defect frequencies. That is exactly the char-

acteristics of vibration signal when the roller bearing has in-

ner-race fault. 

 

 
 

Fig. 10 PFs of tested bearing with inner race defect using 

hybrid SVD and LMD 

 

 
 

Fig. 11 The FFT spectrum of the instantaneous amplitude 

of PF1 

 

 

 

5. Conclusions 

 

When bearing is at fault, the vibration signal is usu-

ally many components of the complex modulation signal. In 

this paper, we have proposed a numerical approach for roll-

ing element bearing fault diagnosis, which combine SVD 

denoising with LMD algorithm. LMD is very suitable for 

the analysis and feature extraction for non-stationary modu-

lation signals. SVD is taken as the as prefilter to denoise and 

enhance the impulsive features, then the fault characteristic 

frequency of the roller bearing can be extracted by applying 

spectrum analysis to the instantaneous amplitude of PF 

component containing dominant fault information. Finally 

the results demonstrate that the proposed approach is suc-

cessful for rolling bearing fault detection and diagnosis. 
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NUMERICAL AND EXPERIMENTAL ANALYSIS OF 

VIBRATORY SIGNALS FOR ROLLING BEARING 

FAULT DIAGNOSIS  

 

S u m m a r y 

 

The detecting technique of the mechanical anom-

aly has been a hot topic in the scientific and engineering 

community. Vibration analysis has been frequently applied 

in the condition monitoring and fault diagnosis of rolling el-

ement bearings. Unfortunately, the vibration signals col-

lected from a faulty bearing are generally nonstationary, 

nonlinear and with strong noise interference, so it is essen-

tial to obtain the fault features correctly. In this paper, a 

novel numerical analysis method that combines the singular 

value decomposition (SVD) and local mean decomposition 

(LMD) is proposed. SVD is a non-parametric technique 

which has been widely used to eliminate the noise and en-

hance the impulsive features, then LMD decompose the pu-

rified signal into a series of product functions (PFs), each of 

which is the product of an envelope signal and a purely fre-

quency modulated FM signal. The envelope of a PF is the 

instantaneous amplitude (IA) and the derivative of the un-

wrapped phase of a purely flat frequency demodulated (FM) 

signal is the IF. After that the fault characteristic frequency 
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of the roller bearing can be extracted by performing spec-

trum analysis to the instantaneous amplitude of PF compo-

nent containing dominant fault information. Finally, the pro-

posed method is applied to experimental data and the results 

show the effectiveness of the proposed technique in fault 

detection and diagnosis of rolling element bearing.  

Keywords: fault diagnosis, vibration analysis, rolling ele-

ment bearing. 
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